

Test Report No.: CE/2017/22951 Page: 1 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

The following samples was/were submitted and identified by/on behalf of the applicant as:

Sample Submitted By : POWERCHIP TECHNOLOGY CORPORATION Sample Description : POWERCHIP DRAM PROCESS WAFER

Sample Receiving Date : 2017/02/13

Testing Period : 2017/02/13 TO 2017/02/18

Test Requested

- (1) As specified by client, with reference to RoHS 2011/65/EU Annex II and amending Directive (EU) 2015/863 to determine Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP contents in the submitted sample.
- (2) Please refer to next pages for the other item(s).

Test Result(s) : Please refer to next page(s).

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Test Report No.: CE/2017/22951 Page: 2 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

Test Result(s)

PART NAME No.1 : WAFER

Toot Itom(a)	Unit	Method	MDL	Result
Test Item(s)	Unit			No.1
Cadmium (Cd)	mg/kg	With reference to IEC 62321-5 (2013) and performed by ICP-AES.	2	n.d.
Lead (Pb)	mg/kg	With reference to IEC 62321-5 (2013) and performed by ICP-AES.	2	n.d.
Mercury (Hg)	mg/kg	With reference to IEC 62321-4 (2013) and performed by ICP-AES.	2	n.d.
Hexavalent Chromium Cr(VI)	mg/kg	With reference to IEC 62321 (2008) and performed by UV-VIS.	2	n.d.
Sum of PBBs	mg/kg		_	n.d.
Monobromobiphenyl	mg/kg]	5	n.d.
Dibromobiphenyl	mg/kg]	5	n.d.
Tribromobiphenyl	mg/kg]	5	n.d.
Tetrabromobiphenyl	mg/kg]	5	n.d.
Pentabromobiphenyl	mg/kg]	5	n.d.
Hexabromobiphenyl	mg/kg]	5	n.d.
Heptabromobiphenyl	mg/kg		5	n.d.
Octabromobiphenyl	mg/kg	With reference to IEC 62321-6 (2015) and	5	n.d.
Nonabromobiphenyl	mg/kg		5	n.d.
Decabromobiphenyl	mg/kg		5	n.d.
Sum of PBDEs	mg/kg	performed by GC/MS.	-	n.d.
Monobromodiphenyl ether	mg/kg]	5	n.d.
Dibromodiphenyl ether	mg/kg]	5	n.d.
Tribromodiphenyl ether	mg/kg		5	n.d.
Tetrabromodiphenyl ether	mg/kg		5	n.d.
Pentabromodiphenyl ether	mg/kg		5	n.d.
Hexabromodiphenyl ether	mg/kg		5	n.d.
Heptabromodiphenyl ether	mg/kg		5	n.d.
Octabromodiphenyl ether	mg/kg		5	n.d.
Nonabromodiphenyl ether	mg/kg		5	n.d.
Decabromodiphenyl ether	mg/kg		5	n.d.

Test Report No.: CE/2017/22951 Page: 3 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

Test Item(s)	Unit	Method	MDL	Result No.1
BBP (Butyl Benzyl phthalate) (CAS No.: 85-68-7)	mg/kg		50	n.d.
DBP (Dibutyl phthalate) (CAS No.: 84-74-2)	mg/kg		50	n.d.
DEHP (Di- (2-ethylhexyl) phthalate) (CAS No.: 117-81-7)	mg/kg		50	n.d.
DIBP (Di-isobutyl phthalate) (CAS No.: 84-69-5)	mg/kg	With reference to IEC 62321-8/CD (2013). Analysis was performed by GC/MS.	50	n.d.
DIDP (Di-isodecyl phthalate) (CAS No.: 26761-40-0; 68515-49-1)	mg/kg		50	n.d.
DINP (Di-isononyl phthalate) (CAS No.: 28553-12-0; 68515-48-0)	mg/kg		50	n.d.
DNOP (Di-n-octyl phthalate) (CAS No.: 117-84-0)	mg/kg		50	n.d.
Halogen-Fluorine (F) (CAS No.: 14762-94-8)	mg/kg	With reference to BS EN 14582 (2007). Analysis was performed by IC.	50	n.d.
Halogen-Chlorine (CI) (CAS No.: 22537-15-1)	mg/kg	With reference to BS EN 14582 (2007). Analysis was performed by IC.	50	n.d.
Halogen-Bromine (Br) (CAS No.: 10097-32-2)	mg/kg	With reference to BS EN 14582 (2007). Analysis was performed by IC.	50	n.d.
Perfluorooctane sulfonates (PFOS-Acid, Metal Salt, Amide)	mg/kg	With reference to US EPA 3550C (2007). Analysis was performed by LC/MS.	10	n.d.
PFOA (CAS No.: 335-67-1)	mg/kg	With reference to US EPA 3550C (2007). Analysis was performed by LC/MS.	10	n.d.
Arsenic (As)	mg/kg	With reference to US EPA 3052 (1996). Analysis was performed by ICP-AES.	2	n.d.
Beryllium (Be)	mg/kg	With reference to US EPA 3052 (1996). Analysis was performed by ICP-AES.	2	n.d.
Red phosphorus	**	Analysis was performed by Pyrolyzer-GC/MS.	-	Negative
Antimony (Sb)	mg/kg	With reference to US EPA 3052 (1996). Analysis was performed by ICP-AES.	2	n.d.

Test Report No.: CE/2017/22951 Page: 4 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

Test Item(s)	Unit	Method	MDL	Result
				No.1
Hexabromocyclododecane (HBCDD) and all major diastereoisomers identified (α-HBCDD, β-HBCDD, γ-HBCDD) (CAS No.: 25637-99-4 and 3194-55-6 (134237-51-7, 134237-50-6, 134237-52-8))	mg/kg	With reference to IEC 62321 (2008). Analysis was performed by GC/MS.	5	n.d.

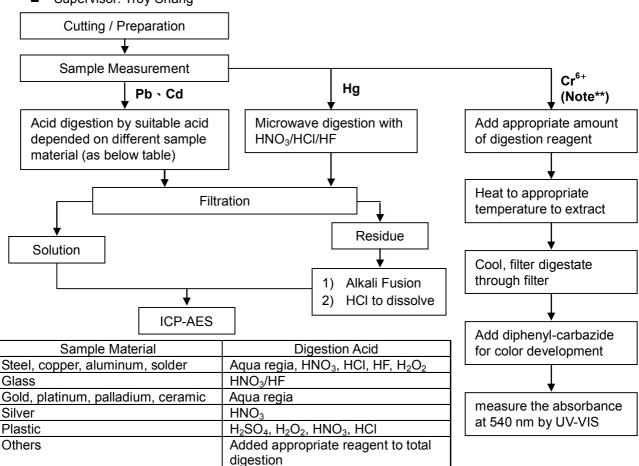
Note:

- 1. mg/kg = ppm; 0.1wt% = 1000ppm
- 2. MDL = Method Detection Limit
- 3. n.d. = Not Detected = less than MDL
- 4. " " = Not Regulated
- 5. ** = Qualitative analysis (No Unit)
- 6. Negative = Undetectable / Positive = Detectable

PFOS Reference Information: POPs - (EU) 757/2010

Outlawing PFOS as substances or preparations in concentrations above 0.001% (10ppm), in semi-finished products or articles or parts at a level above 0.1%(1000ppm), in textiles or other coated materials above 1µg/m².

Test Report No.: CE/2017/22951 Page: 5 of 13 Date: 2017/02/18


POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

Analytical flow chart of Heavy Metal

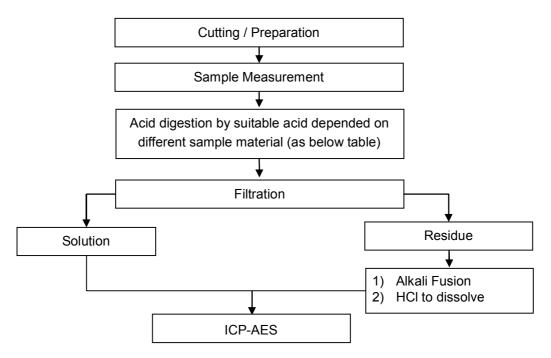
These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr⁶⁺ test method excluded)

Technician: JR Wang Supervisor: Troy Chang

Note** (For IEC 62321)

- (1) For non-metallic material, add alkaline digestion reagent and heat to 90~95 ℃.
- (2) For metallic material, add pure water and heat to boiling.

Test Report No.: CE/2017/22951 Page: 6 of 13 Date: 2017/02/18


POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

These samples were dissolved totally by pre-conditioning method according to below flow chart.

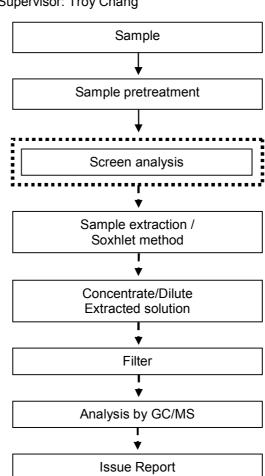
Technician: JR Wang Supervisor: Troy Chang

Flow Chart of digestion for the elements analysis performed by ICP-AES

Steel, copper, aluminum, solder	Aqua regia, HNO ₃ , HCl, HF, H ₂ O ₂		
Glass	HNO ₃ /HF		
Gold, platinum, palladium, ceramic	Aqua regia		
Silver	HNO ₃		
Plastic	H ₂ SO ₄ , H ₂ O ₂ , HNO ₃ , HCI		
Others	Added appropriate reagent to total digestion		

Test Report No.: CE/2017/22951 Page: 7 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.



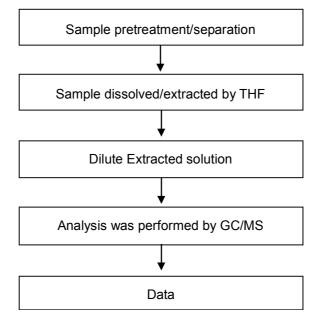
Analytical flow chart - PBB / PBDE

Technician: Yaling Tu Supervisor: Troy Chang

First testing process -Optional screen process

Confirmation process

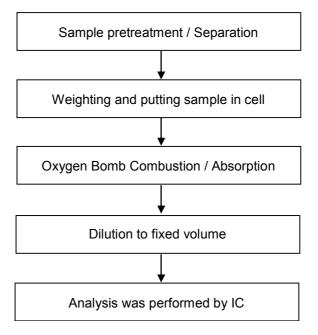
Test Report No.: CE/2017/22951 Page: 8 of 13 Date: 2017/02/18


POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

Analytical flow chart - Phthalate

Technician: Andy Shu Supervisor: Troy Chang

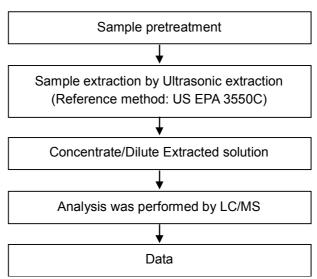
[Test method: IEC 62321-8]


Test Report No.: CE/2017/22951 Page: 9 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

Analytical flow chart - Halogen

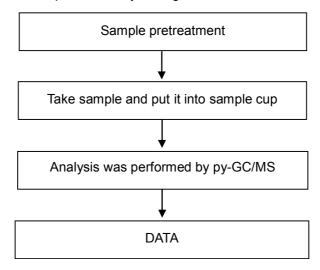
Technician: Rita Chen Supervisor: Troy Chang


Test Report No.: CE/2017/22951 Page: 10 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

Analytical flow chart - PFOA/PFOS

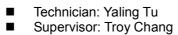
Technician: Yaling Tu Supervisor: Troy Chang

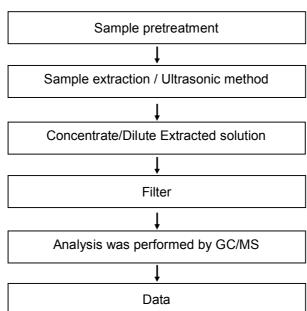

Test Report No.: CE/2017/22951 Page: 11 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

Analytical flow chart - Red phosphorus

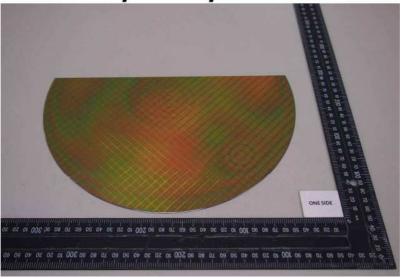
Technician: Yaling Tu Supervisor: Troy Chang



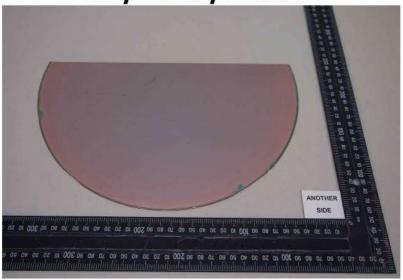

Test Report No.: CE/2017/22951 Page: 12 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.

Analytical flow chart - HBCDD


Test Report No.: CE/2017/22951 Page: 13 of 13 Date: 2017/02/18

POWERCHIP TECHNOLOGY CORPORATION NO. 12, LI-HSIN RD. 1, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, R. O. C.



* The tested sample / part is marked by an arrow if it's shown on the photo. *

CE/2017/22951

CE/2017/22951

** End of Report **